Show that the number $(3^{77}-1)/2$ is odd and composite.The hint proposed in the question text is to compute $3^{77} \mod\ 4$ (mod means division reminder: $ 13 \mod\ 5\ =\ 3$). Let's do that then. The useful think is that there is only a small number of possible reminders mod 4 (four exactly), so we if we calculate first, second, third etc. power of 3 we will have some cycle:
$ 3 \mod\ 4\ =\ 3$
$ 3^2 \mod\ 4\ =\ 1$
$ 3^3 \mod\ 4\ =\ 3$
$ 3^4 \mod\ 4\ =\ 1$
...
Bum! Pattern spotted. Therefore: $3^{77} \mod\ 4\ =\ 3$. Now by simple transform:
$3^{77}-1 \mod\ 4\ =\ 2$
$(3^{77}-1)/2 \mod\ 2\ =\ 1$
So the number is odd. If any of above transformations confuses you please read about modular arithmetic. The prove that it's composite you have to know some of the less popular quick multiplication formulas:
In our case formula is a little simpler:
$a^n-1 = (a-1)(a^{n-1}+ .. + 1)$
Now how to use it? $a = 3$ gives factor of 2 but we divide by two in the formula, so that's not helpful, right?Right?
Wrong!
And I have to admit a fall for this a the beginning, but after consultation with a friend I went back on the right path:
Let's consider $ a = 3^{7}$. It gives us
$(3^7)^{11}-1 = (3^7-1)*((3^7)^{10} + (3^7)^9.. + 1)$
Where X is some integer greater than one. So then
$( (3^{77}-1)/2 = (3^7-1)/2 * ((3^7)^{10} + (3^7)^9.. + 1) $, so it's composite. Eureca!
OK. I have to admit this question was boring. I am sorry I picked up question at random just to write some test thing on blog. It was a little challenging but come on, who likes tedious arithmetic?
شركة مكافحة النمل الابيض في مكة
ReplyDeleteشركة تنظيف الاثاث بالرياض
شركة رش الدفان بالرياض
صالونات الأعمال في مكة
شركة نقل اثاث بالرياض
شركة تنظيف مفروشات فى مكة
شركة رش الدفان بالرياض
شركة تخزين اثاث بالرياض
شركة تسليك مجاري بالخرج
شركة تنظيف فلل بالخرج
شركة تنظيف بالخرج
شركة تنظيف شقق بالخرج
شركة تنظيف خزانات بالخرج
شركة مكافحة الصراصير بالخرج
شركة مكافحة الفئران بالخرج
افضل شركة تنظيف منازل بالرياض https://is.gd/Zoqgbn شركة تنظيف بيوت بالرياض
ReplyDeleteسرعان ما تتعرض البيوت لانتشار الشوائب والأتربه والاتساخات الخطيرة ؛لذلك فكافه أجزاء البيوت تحتاج الى أعمال تنظيف دورية ومستمرة ؛فالبيوت من اثاث سواء مجالس أو غرف نوم أو سفر أو صالونات تحتاج الى أعمال تنظيف ؛كما تتمكن شركة تنظيف منازل من القيام بأعمال تنظيف البيوت ومكافحة الحشرات وتنظيف الخزانات وكشف تسربات الماء وغيرها من الأجزاء الأخرى ؛لذلك من الأن لا داعى للقلق بشأن أعمال تنظيف البيوت ؛نحن شركة تنظيف بالرياض التى تعتمد على فريق عمل متخصص لديه خبرات واسعه فى القيام بأعمال تنظيف البيوت .
https://sauditourguide.com/%D8%B4%D8%B1%D9%83%D8%A9-%D8%AA%D9%86%D8%B8%D9%8A%D9%81-%D9%85%D9%86%D8%A7%D8%B2%D9%84-%D8%A8%D8%A7%D9%84%D8%B1%D9%8A%D8%A7%D8%B6/
تتراكم الأتربه والشوائب فى البيوت مسببة فى تعرض البيوت للعديد من الأمراض الخطيرة التى تؤثر سلبيا على الأفراد ؛فالبيوت تتعرض للنوافذ والشبابيك وغيرها من المنافذ التى سرعان ما تتعرض للعديد من الشوائب والعوالق الخطيرة ؛لذلك يتم الاعتماد على مجموعه من الألات والمعدات الحديثة وأجهزة البخار التى تساعد على التخلص من الشوائب والعوالق سريعا ؛فقط شركة تنظيف منازل بالرياض تعتمد على أحدث وأفضل الأساليب... اقرأ المزيد https://sauditourguide.com/شركة-تنظيف-منازل-بالرياض/
المصدر: شركة تنظيف منازل بالرياض
المصدر: شركة تنظيف بيارات بالرياض https://is.gd/uGHbqs
Wonderful post! Great post on this website
ReplyDeleteVery neat blog. Really thank you! Great
ReplyDeleteIt was definitely informative. very cool man
ReplyDeleteI look forward to reading many articles from you.
ReplyDeleteIt's really great and informative.
ReplyDeleteI got really good information from this content, thanks for sharing.
ReplyDelete
ReplyDeleteFabulous, what a weblog it is! This blog provides valuable information to us, keep it up.
Nice read, I just passed this onto a friend who was doing some research on that.
ReplyDeleteI am not positive where you’re getting your info, however great topic.
ReplyDeleteI needs to spend some time studying more or understanding more.
ReplyDeleteThanks for magnificent information I used to be in search of this information for my mission.
ReplyDeleteI have discovered It positively useful and it has helped me out loads.
ReplyDeleteI truly enjoyed the top quality info you present to your visitors.
ReplyDeleteWill be back again frequently to check up on new posts.
ReplyDeleteIt was my excitement discovering your site last night.
ReplyDelete
ReplyDeletethanks for sharing great blog article thanks again
Glad that you shared this helpful info with us. Many thanks, I support you!
ReplyDeleteThank so many good articles you provide here, thanks for sharing.
ReplyDeleteI am waiting for your next valuable post. Keep on sharing many us support you
ReplyDeleteI have read this article; it is very informative and helpful for me. Great job you did
ReplyDeletethis is great inspiring Article. visit my website now.
ReplyDeleteThe article has truly piqued my interest.
ReplyDeleteI was just stuck with the content of the post.
ReplyDeleteI really love the theme/design of your website.
ReplyDeleteI found so many interesting stuff in your blog especially its discussion.
ReplyDeleteI guess I am not the only one having all the enjoyment here keep up the good work.
ReplyDeleteThank you for sharing this fascinating information. Best of luck.
ReplyDeleteYour creative writing abilities inspired me to get my own blog now Thank you.
ReplyDeleteCool you write, the information is very good and interesting,
ReplyDelete